

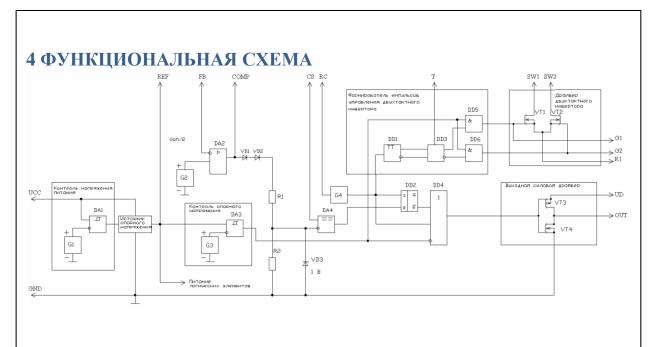
2 ОСОБЕННОСТИ

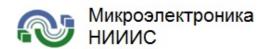
- напряжения питания микросхемы: 0–16 В
- максимальная длительность цикла: 95-100 %
- частота генератора: 50...1000 кГц
- защита от перегрузки по току
- корпус Н08.24-2В
- возможна поставка в бескорпусном исполнении на общей пластине

3 ПРИМЕНЕНИЕ

Микросхема интегральная, предназначена для управления силовым импульсного стабилизатора напряжения методом широтно-импульсной модуляции (ШИМ) с обратной связью по напряжению и току. Предназначена для построения радиоэлектронной аппаратуры специального назначения всех климатических исполнений.

1 ОПИСАНИЕ


Микросхема управляет силовым ключом импульсного стабилизатора напряжения методом ШИМ с обратной связью по напряжению и току.


При работе микросхемы в источнике питания напряжение сигнала обратной связи поступает на инвертирующий вход усилителя ошибки, где сравнивается с опорным напряжением 2,5 В.

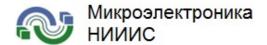
Выход усилителя ошибки соединен с выводом СОМР микросхемы, что дает возможность с помощью внешнего конденсатора осуществить компенсацию частотной характеристики и установить требуемый коэффициент усиления с помощью внешнего резистора между выводами СОМР и FB. На вход CS подается сигнал с датчика тока, в качестве которого может быть применен внешний шунт или токовый трансформатор. Использование режима регулирования по току позволяет микросхеме быстрее корректировать изменение входного напряжения и получить более устойчивую работу стабилизатора. Цепь управления CS содержит дополнительны компаратор с опорой 1 В. Превышение данного напряжения «сбрасывает» выход драйвера в низкий уровень, обеспечивая защиту силового ключа источника питания от перегрузки по току.

Частота переключения выходного драйвера и максимальная длительность цикла устанавливается внешними резистором и конденсатором. Можно осуществлять синхронизацию генератора от внешнего импульсного источника.

Микросхема содержит блок UVLO, который запрещает работу драйвера при низких напряжения питания защищая силовой ключ от недостаточного напряжения на затворе.

СОДЕРЖАНИЕ

1 ОПИСАНИЕ 1	7 УСЛОВНОЕ ГРАФИЧЕСКОЕ
2 ОСОБЕННОСТИ 1	ОБОЗНАЧЕНИЕ
3 ПРИМЕНЕНИЕ 1	8 ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ.
4 ФУНКЦИОНАЛЬНАЯ СХЕМА 1	9 СХЕМА ВКЛЮЧЕНИЯ
5 ИСТОРИЯ ПОСЛЕДНИХ ИЗМЕНЕНИЙ . 3	7ЖЭТЧЭР ЙЫНТИЧААА 10
6 НАЗНАЧЕНИЕ ВЫВОЛОВ 4	

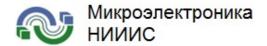

5 ИСТОРИЯ ПОСЛЕДНИХ ИЗМЕНЕНИЙ

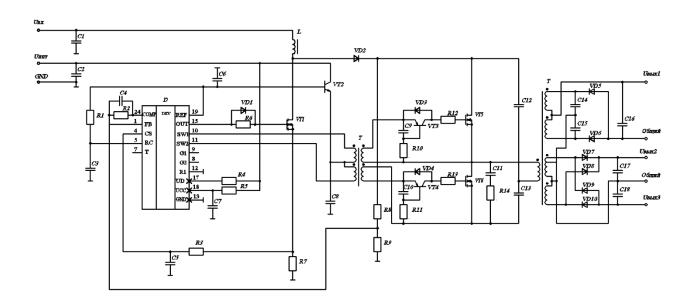
Дата Изменение



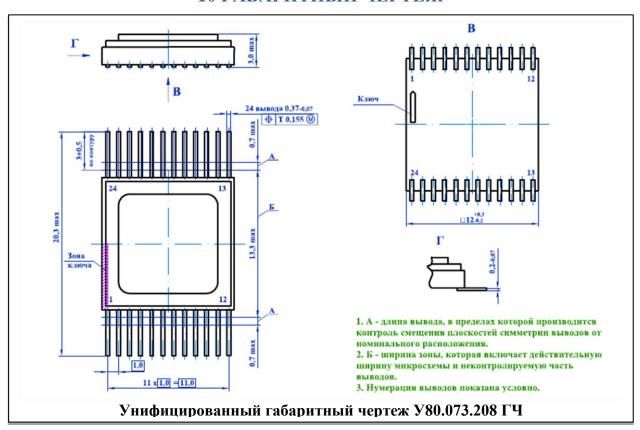
6 НАЗНАЧЕНИЕ ВЫВОДОВ

Номер вывода	Обозначение вывода	Функциональное назначение вывода			
корпуса					
1	FB	Инвертирующий вход усилителя ошибки			
2	-	Не используется			
3	-	Не используется			
4	CS	Вход токового компаратора			
5	RC	Вывод задания частоты генератора			
6	-	Не используется			
7	T	Вывод задания паузы между SW1 и SW2			
8	G2	Вывод 2 управления затворами выходных транзисторов			
9	G1	Вывод 1 управления затворами выходных транзисторов			
10	SW1	Выход 1 двухтактного инвертора			
11	SW2	Выход 2 двухтактного инвертора			
12	R1	Истоки выходных транзисторов			
13	GND	Общий вывод			
14	-	Не используется			
15	OUT	Выход силового драйвера			
16	-	Не используется			
17	UD	Вывод питания драйвера			
18	UCC	Вывод питания			
19	REF	Выход источника опорного напряжения			
20	-	Не используется			
21	-	Не используется			
22	-	Не используется			
23	-	Не используется			
24	COMP	Выход усилителя ошибки			





8 ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ


Параметры	Условия	Норма параметра						Епп
	измерений	от -55°C до + 80°C				25°C		Един.
	измерении	Мин.	Тип.	Макс.	Мин.	Тип.	Макс.	измер.
1.Выходное напряжение источника опорного напряжения	U _{пит} =12 В I _{оп} =1 мА	4,83	5	5,17	4,9	5,032	5,1	В
2.Нестабильность источника опорного напряжения по входному напряжению	U _{ПИТ} = 10; 16 В I _{ОП} =1 мА	-	0,029	0,05	-	0,023	0,03	%/B
3. Нестабильность источника опорного напряжения по току	$U_{\Pi U T} = 12 \ B$ $I_{O\Pi} = 1; 20 \ MA$	0	9,533	30	-	6,15	30	%/A
4. Напряжение включения микросхемы	$U_{ m BЫКЛ} \le U_{ m ПИТ} \le U_{ m BKЛ}$	-	-	ı	8,0	8,54	9,0	В
5. Напряжение выключения	$U_{\rm ВЫКЛ} \le U_{\rm ПИТ} \le U_{\rm ВКЛ}$	-	-	-	U _{вкл} -2,0	7,1	U _{вкл} -1,0	В
6.Время нарастания импульса выходного напряжения	U _{ПИТ} =12 В F _{ГЕН} =1000 кГц С _Н =1 нФ	-	37	50	-	22	50	нс
7.Время спада импульса выходного напряжения	U _{ΠΙΙΤ} =12 B F _{ΓΕΗ} =1000 κΓιι C _H =1 нΦ	-	17	40	-	14	40	нс
8. Остаточное напряжение выходного каскада при втекающем токе,	U _{пит} =12 В Івт=20 мА	-	-	-	-	0,0044	0,4	В
9. Остаточное напряжение выходного каскада при вытекающем токе, В	U _{пит} =12 В Івыт=20 мА	-	-	-	-	0,217	1,0	В
10. Остаточное напряжение на выводах SW1, SW2 при втекающем токе	U _{пит} =16 В Івт1=100 мА	-	-	-	-	0,356	0,6	В
11. Время перехода при включении ключей SW1, SW2, нс	U _{ΠИΤ} =16 B F _{ГЕН} =52 κΓц RH = 75 OM	-	-	-	-	35	100	нс
12. Время перехода при выключении ключей SW1, SW2	$U_{\Pi \Pi T}$ =16 В $F_{\Gamma E H}$ =52 к Γ ц R_{H} = 75 Ом	-	-	-	-	26	100	нс
13. Остаточное напряжение на выводах G1, G2 при втекающем токе	U _{пит} =12 В Івт2=12 мА	-	-	-	-	0,696	1,5	В
14. Остаточное напряжение на выводах G1, G2 при вытекающем токе	U _{пит} =12 В Івт2=12 мА	-	-	-	-	0,645	1,5	В
15 Максимальный рабочий цикл	U _{пит} =12 В F _{ген} =52 кГц	95	98,4	100	95	98,4	100	%
16 Минимальный рабочий цикл	U _{пит} =12 В F _{ген} =52 кГц	0	0,8	10	0	0,8	10	%
17. Входное пороговое напряжение компаратора ограничения тока	U _{пит} =12 В	0,8	0,975	1,2	0,8	0,995	1,2	В
18. Ток потребления	$U_{\Pi U T} = 16 B$ $U_{FB} = U_{CS} = U_{RC} = 0$	-	3,139×10 ⁻³	6	-	3,347×10 ⁻³	6	мА
19 Время паузы между выводами SW1и SW2 - при неподключенном выводе Т	U _{ΠИΤ} =12 B F _{ГЕН} =1000 κΓц RH = 75 OM	-	-	-	0	0	150	нс
- при $I_T = 60 \ \text{мкA}$	$U_{\Pi \Pi \Pi} = 12 B$ $F_{\Gamma E H} = 1000 \ \kappa \Gamma \mu$ $R_H = 75 \ Om$	-	-	-	t _{nay3a1} +30	30	-	

9 СХЕМА ВКЛЮЧЕНИЯ

10 ГАБАРИТНЫЙ ЧЕРТЕЖ

